
Diverse Near Neighbor Problem

Sofiane Abbar (QCRI)
Sihem Amer-Yahia (CNRS)

Piotr Indyk (MIT)
Sepideh Mahabadi (MIT)

Kasturi R. Varadarajan (UIowa)

Near Neighbor Problem
• Definition

– Set of 𝑛 points 𝑷 in 𝑑-dimensional
space

– Query point 𝒒
– Report one neighbor of 𝒒 if there is any

• Neighbor: A point within distance 𝑟 of
query

• Application
– Major importance in databases

(document, image, video),
information retrieval, pattern
recognition
• Object of interest as point
• Similarity is measured as distance.

Motivation
Search: How many answers?
• Small output size, e.g. 10

– Reporting 𝑘 Nearest Neighbors may not
be informative (could be identical texts)

• Large output size
– Time to retrieve them is high

Small output size which is
• Relevant and Diverse
• Good to have result from each

cluster, i.e. should be diverse

Diverse Near Neighbor Problem
• Definition

– Set of 𝑛 points 𝑷 in 𝑑-dimensional space
– Query point 𝒒
– Report the k most diverse neighbors of 𝑞

• Neighbor:
– Points within distance 𝑟 of query
– We use Hamming distance

• Diversity:
– div S = m𝑖𝑛

𝑝,𝑞∈𝑆
|𝑝 − 𝑞|

• Goal: report Q (green points), s.t.

– 𝑄 ⊆ 𝑃 ∩ 𝐵 𝑞, 𝑟
– |Q| = k
– 𝑑𝑖𝑑 𝑄 is maximized

Approximation
• Want sublinear query time, so need to approximate
• Approximate NN:

– 𝐵 𝑞, 𝑟 → 𝐵 𝑞, 𝑐𝑟 for some value of 𝑐 > 1

– Result: query time of 𝑂(𝑑𝑛
1
𝑐)

• Approximate Diverse NN:
– Bi-criterion approximation: distance and diversity
– (𝐜,𝜶)-Approximate 𝑘-diverse Near Neighbor
– Let 𝑄∗ (green points) be the optimum solution for 𝐵 𝑞, 𝑟

• Report approximate neighbors 𝑄 (purple points)
𝑄 ⊆ 𝐵 𝑞, 𝑐𝑟

• Diversity approximates the optimum diversity

 𝑑𝑖𝑑 𝑄 ≥ 1
𝛼
𝑑𝑖𝑑 (𝑄∗) , 𝛼 ≥ 1

Results
Algorithm A Algorithm B

Distance Apx. Factor c > 2 c >1

Diversity Apx. Factor α 6 6

Space (𝑛 log𝑘)1+1/(𝑐−1)+𝑛𝑑 log𝑘 ∗ 𝑛1+1/𝑐 + 𝑛𝑑

Query Time 𝑘2 +
log𝑛
𝑟 𝑑 (log𝑘)𝑐/(𝑐−1)𝑛1/(𝑐−1)

𝑘2 +
log𝑛
𝑟 𝑑 ∗ log𝑘 ∗ 𝑛1/𝑐

• Algorithm A was earlier introduced in [Abbar, Amer-yahia, Indyk, Mahabadi,
WWW’13]

Techniques

Compute k-diversity: GMM
• Have n points, compute the subset with

maximum diversity.
• Exact : NP-hard to approximate better

than 2 [Ravi et al.]
• GMM Algorithm [Ravi et al.] [Gonzales]

– Choose an arbitrary point
– Repeat k-1 times

• Add the point whose minimum distance to the
currently chosen points is maximized

• Achieves approximation factor 2
• Running time of the algorithm is O(kn)

Locality Sensitive Hashing (LSH)
• LSH

– close points have higher probability of
collision than far points

– Hash functions: 𝑔1 , … ,𝑔𝐿
• 𝑔𝑖 = < ℎ𝑖,1, … , ℎ𝑖,𝑡 >
• ℎ𝑖,𝑗 ∈ ℋ is chosen randomly
• ℋ is a family of hash functions which is

𝑃1,𝑃2, 𝑟, 𝑐𝑟 -sensitive:
– If 𝑝 − 𝑝𝑝 ≤ 𝑟 then Pr ℎ 𝑝 = ℎ 𝑝𝑝 ≥ 𝑃1
– If 𝑝 − 𝑝𝑝 ≥ 𝑐𝑟 then Pr ℎ 𝑝 = ℎ 𝑝𝑝 ≤ 𝑃2

• Example: Hamming distance:
– ℎ 𝑝 = 𝑝𝑖 , i.e., the ith bit of 𝑝
– Is (1 − 𝑟

𝑑
, 1 − 𝑟𝑐

𝑑
, 𝑟, 𝑟𝑐)-sensitive

– 𝑳 and 𝒕 are parameters of LSH

LSH-based Naïve Algorithm
• [Indyk, Motwani] Parameters 𝐿 and 𝑡 can be set s.t.

With constant probability
– Any neighbor of 𝑞 falls into the same bucket as 𝑞 in at least

one hash function
– Total number of outliers is at most 3𝐿
– Outlier : point farther than 𝑐𝑟 from the query point

Algorithm
• Arrays for each hash function 𝐴1, … ,𝐴𝐿
• For a query 𝒒 compute

– Retrieve the possible neighbors S = ⋃ 𝑨[𝑔𝑖(𝑞)]𝐿
𝑖=1

– Remove the outliers S = S ∩ B q, cr
– Report the approximate k most diverse points of S, or

GMM(S)

• Achieves (c,2)-approximation

• Running time may be linear in 𝑛
– Should prune the buckets before collecting them

Core-sets
• Core-sets [Agarwal, Har-Peled, Varadarajan]: subset of a point set S that

represents it.
• Approximately determines the solution to an optimization

problem
• Composes: A union of coresets is a coreset of the union

• β– core-set: Approximates the cost up-to a factor of β

• Our Optimization problem:
– Finding the k-diversity of S.
– Instead we consider finding K-Center Cost of S

• 𝐾𝐾 𝑆, 𝑆′ = max
𝑝∈𝑆

min
𝑝′∈𝑆′

𝑝 − 𝑝′

• 𝐾𝐾𝑘 𝑆 = min
𝑆′⊆𝑆 , 𝑆′ =𝑘

𝐾𝐾(𝑆, 𝑆′)

– KC cost 2-approximates diversity
• 𝐾𝐾𝑘−1 𝑆 ≤ 𝑑𝑖𝑑𝑘 𝑆 ≤ 2.𝐾𝐾𝑘−1 𝑆

• GMM computes a 1/3-Coreset for KC-cost

Algorithms

Algorithm A
• Parameters 𝐿 and 𝑡 can be set s.t. with constant probability

– Any neighbor of 𝑞 falls into the same bucket as 𝑞 in at least one hash
function

– There is no outlier

• No need to keep all the points in each bucket,
• just keep a coreset!

– 𝑨𝑝𝒊 𝒋 = 𝑮𝑮𝑮 𝑨𝒊 𝒋
– Keep a 1/3 coreset of 𝑨𝒊 𝒋

• Given query 𝒒

– Retrieve the coresets from buckets S = ⋃ 𝑨𝑝[𝑔𝑖(𝑞)]𝐿
𝑖=1

– Run GMM(S)
– Report the result

Analysis

• Achieves (c,6)-Approx
– Union of 1/3 coresets is a 1/3 coreset for the union
– The last GMM call, adds a 2 approximation factor

• Only works if we set 𝐿 and 𝑡 s.t. there is no outlier in 𝑆

with constant probability
– Space: 𝑂 𝑛𝐿 = 𝑂((𝑛 log 𝑘)1+1/(𝑐−1) + 𝑛𝑑)
– Time: 𝑂 𝐿𝑘2 = 𝑂(𝑘2 + log 𝑛

𝑟
𝑑 (log 𝑘)𝑐/(𝑐−1)𝑛1/(𝑐−1))

– Only makes sense for 𝑐 > 2

• Not optimal:
– ANN query time is 𝑂(𝑑𝑛

1
𝑐)

– So if we want to improve over these we should be able to deal
with outliers.

Robust Core-sets
• 𝑆′is an 𝑙-robust β-coreset for S if

– for any set 𝑂 of outliers of size at most 𝑙
– (𝑆𝑝\O) is a β-coreset for 𝑆

• Peeling Algorithm [Agarwal, Har-peled,
Yu,’06][Varadarajan, Xiao, ‘12]:

– Repeat (𝑙 + 1) times
• Compute a β-coreset for 𝑆
• Add them to the coreset 𝑆𝑝
• Remove them from the set 𝑆

Note: if we order the points in 𝑆𝑝 as we find
them, then the first 𝑙′ + 1 𝑘 points also form
an 𝑙𝑝-robust β-coreset.

2 robust coreset: S’= {3, 5; 2, 9; 1, 6}

1 robust coreset

Algorithm B
• Parameters 𝐿 and 𝑡 can be set s.t. With constant

probability
– Any neighbor of 𝑞 falls into the same bucket as 𝑞 in at least one

hash function
– Total number of outliers is at most 3𝐿

• For each bucket 𝐴𝑖 𝑗 keep an 3𝐿-robust 1/3-coreset in
𝐴𝑝𝑖 𝑗 which has size 3𝐿 + 1 𝑘

• For query 𝑞

– For each bucket 𝐴𝑝[𝑔𝑖(𝑞)]
• Find smallest 𝑙 s.t. the first (𝑘𝑙) points contains less than 𝑙 outliers
• Add those 𝑘𝑙 points to 𝑆

– Remove outliers from 𝑆
– Return 𝐺𝐺𝐺(𝑆)

Example and Analysis

• Total # outliers ≤ 3𝐿 , 𝑆 < 𝑂(𝐿𝑘)

• Time: O(𝐿𝑘2) = O(𝑘2 + log 𝑛
𝑟

𝑑 ∗ log 𝑘 ∗ 𝑛
1
𝑐)

• Space: 𝑂 𝑛𝐿 = 𝑂(log𝑘 ∗ 𝑛1+1/𝑐 + 𝑛𝑑)
• Achieves (c,6)-Approx for the same reason

Conclusion

Further Work
• Improve diversity factor α
• Consider other definitions of diversity , e.g., sum of distances

Algorithm A Algorithm B ANN

Distance Apx.
Factor

c > 2 c >1

c >1

Diversity Apx.
Factor α

6 6 -

Space
~𝑛1+

1
𝑐−1 ~𝑛1+

1
𝑐 𝑛1+

1
𝑐

Query Time
~𝑑 𝑛

1
𝑐−1 ~𝑑 𝑛

1
𝑐 𝑑 𝑛

1
𝑐

Thank You!

	Diverse Near Neighbor Problem
	Near Neighbor Problem
	Motivation
	Diverse Near Neighbor Problem
	Approximation
	Results
	Techniques
	Compute k-diversity: GMM
	Locality Sensitive Hashing (LSH)
	LSH-based Naïve Algorithm
	Core-sets
	Algorithms
	Algorithm A
	Analysis
	Robust Core-sets
	Algorithm B
	Example and Analysis�
	Conclusion
	Thank You!

