Diverse Near Neighbor Problem

Sofiane Abbar (QCRI)
Sihem Amer-Yahia (CNRS)
Piotr Indyk (MIT)
Sepideh Mahabadi (MIT)
Kasturi R. Varadarajan (Ulowa)

Near Neighbor Problem

- Definition
- Set of n points \boldsymbol{P} in d-dimensional space
- Query point \boldsymbol{q}
- Report one neighbor of \boldsymbol{q} if there is any
- Neighbor: A point within distance r of query
- Application

- Major importance in databases (document, image, video), information retrieval, pattern recognition
- Object of interest as point
- Similarity is measured as distance.

Motivation

Search: How many answers?

- Small output size, e.g. 10
- \quad Reporting k Nearest Neighbors may not be informative (could be identical texts)
- Large output size
- \quad Time to retrieve them is high

Small output size which is

- Relevant and Diverse
- Good to have result from each cluster, i.e. should be diverse

jaguar

About $350,000,000$ results (0.27 seconds)

Jaguar USA - Jaguar Cars

 www.jaguar.com/us/enitems - Skip to main contents. Skip to footer. Bad to Jaguar homepage ...
How Alive Are You Join a new generation of Jaguar. Take the test and XF | BE MOVED EVERYDAY A combination of luxury and performance you ...
৬ XJ - XF - Jaguar's Racing Heart - Pre-Owned
Jaguar - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Jaguar
The jaguar is a big cat, a feline in the Panthera genus, and is the only Panthera species found in the Americas. The jaguar is the third-largest feline after the tiger ...
५ Jaguar Cars - Jaguar (disambiguation) - Jadkonville Jaguars - Jaguarundi

Jaguar Cars - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Jaguar_Cars
Jaguar Cars Ltd, known simply as Jaguar is a British luxury and sports car manufacturer, headquartered in Whitley, Coventry, England. It is part of the Jaguar.

Images for jaguar - Report images

Diverse Near Neighbor Problem

- Definition
- \quad Set of n points \boldsymbol{P} in d-dimensional space
- Query point \boldsymbol{q}
- \quad Report the \mathbf{k} most diverse neighbors of q
- Neighbor:
- Points within distance r of query
- We use Hamming distance
- Diversity:
$-\operatorname{div}(\mathrm{S})=\min _{p, q \in S}|p-q|$
- Goal: report \mathbf{Q} (green points), s.t.
$-\quad Q \subseteq P \cap B(q, r)$
$-\quad|Q|=k$
- $\quad \operatorname{div}(Q)$ is maximized

Approximation

- Want sublinear query time, so need to approximate
- Approximate NN:
- $\quad B(q, r) \rightarrow B(q, c r)$ for some value of $c>1$
- Result: query time of $O\left(d n^{\frac{1}{c}}\right)$
- Approximate Diverse NN: k=3
- Bi-criterion approximation: distance and diversity
- (c, $\boldsymbol{\alpha})$-Approximate k-diverse Near Neighbor
- Let Q^{*} (green points) be the optimum solution for $B(q, r)$
- Report approximate neighbors Q (purple points) $Q \subseteq B(q, c r)$
- Diversity approximates the optimum diversity

$$
\operatorname{div}(Q) \geq \frac{1}{\alpha} \operatorname{div}\left(Q^{*}\right), \alpha \geq 1
$$

Results

	Algorithm A	Algorithm B
Distance Apx. Factor	$c>2$	$\mathrm{c}>1$
Diversity Apx. Factor α	6	6
Space	$(n \log k)^{1+1 /(c-1)}+n d$	$\log k * n^{1+1 / c}+n d$
Query Time	$\left(k^{2}+\frac{\log n}{r}\right) d(\log k)^{c /(c-1)} n^{1 /(c-1)}$	$\left(k^{2}+\frac{\log n}{r}\right) d * \log k * n^{1 / c}$

- Algorithm A was earlier introduced in [Abbar, Amer-yahia, Indyk, Mahabadi, WWW'13]

Techniques

Compute k-diversity: GMM

- Have n points, compute the subset with maximum diversity.
- Exact : NP-hard to approximate better than 2 [Ravi et al.]
- GMM Algorithm [Ravi et al.] [Gonzales]
- Choose an arbitrary point
- Repeat k-1 times
- Add the point whose minimum distance to the currently chosen points is maximized
- Achieves approximation factor 2
- Running time of the algorithm is $\mathrm{O}(\mathrm{kn})$

Locality Sensitive Hashing (LSH)

- LSH

- close points have higher probability of collision than far points

- Hash functions: g_{1}, \ldots, g_{L}
- $g_{i}=<h_{i, 1}, \ldots, h_{i, t}>$
- $h_{i, j} \in \mathcal{H}$ is chosen randomly
- \mathcal{H} is a family of hash functions which is ($P_{1}, P_{2}, r, c r$)-sensitive:
- If $\left|\mid p-p^{\prime} \| \leq r\right.$ then $\operatorname{Pr}\left[h(p)=h\left(p^{\prime}\right)\right] \geq P_{1}$
- If $\left|\left|p-p^{\prime}\right|\right| \geq c r$ then $\operatorname{Pr}\left[h(p)=h\left(p^{\prime}\right)\right] \leq P_{2}$
- Example: Hamming distance:
- $\quad h(p)=p_{i}$, i.e., the ith bit of p
- Is $\left(1-\frac{r}{d}, 1-\frac{r c}{d}, r, r c\right)$-sensitive

- $\quad L$ and t are parameters of LSH

LSH-based Naïve Algorithm

- [Indyk, Motwani] Parameters L and t can be set s.t. With constant probability
- Any neighbor of q falls into the same bucket as q in at least one hash function
- Total number of outliers is at most $3 L$
- Outlier : point farther than cr from the query point

Algorithm

- Arrays for each hash function A_{1}, \ldots, A_{L}
- For a query \boldsymbol{q} compute
- Retrieve the possible neighbors $S=\bigcup_{i=1}^{L} \boldsymbol{A}\left[g_{i}(q)\right]$
- Remove the outliers $S=S \cap B(q, c r)$
- Report the approximate k most diverse points of S, or GMM(S)
- Achieves (c,2)-approximation

- Running time may be linear in n
- Should prune the buckets before collecting them

Core-sets

- Core-sets [Agarwal, Har-Peled, Varadarajan]: subset of a point set \mathbf{S} that represents it.
- Approximately determines the solution to an optimization problem
- Composes: A union of coresets is a coreset of the union
- β - core-set: Approximates the cost up-to a factor of β
- Our Optimization problem:
- Finding the k-diversity of S.
- Instead we consider finding K-Center Cost of S
- $K C\left(S, S^{\prime}\right)=\max _{p \in S} \min _{p^{\prime} \in S^{\prime}}\left|p-p^{\prime}\right|$
- $K C_{k}(S)=\min _{S^{\prime} \subseteq S,\left|S^{\prime}\right|=k} K C\left(S, S^{\prime}\right)$
- KC cost 2-approximates diversity
- $K C_{k-1}(S) \leq \operatorname{div}_{k}(S) \leq 2 . K C_{k-1}(S)$

- GMM computes a 1/3-Coreset for KC-cost

Algorithms

Algorithm A

- Parameters L and t can be set s.t. with constant probability
- Any neighbor of q falls into the same bucket as q in at least one hash function
- There is no outlier
- No need to keep all the points in each bucket,
- just keep a coreset!
$-\boldsymbol{A}_{i}^{\prime}[j]=\operatorname{GMM}\left(A_{i}[j]\right)$
- Keep a $1 / 3$ coreset of $\boldsymbol{A}_{\boldsymbol{i}}[\boldsymbol{j}]$
- Given query \boldsymbol{q}

- Retrieve the coresets from buckets $S=\bigcup_{i=1}^{L} A^{\prime}\left[g_{i}(q)\right]$
- Run GMM(S)
- Report the result

Analysis

- Achieves (c,6)-Approx
- Union of $1 / 3$ coresets is a $1 / 3$ coreset for the union
- The last GMM call, adds a 2 approximation factor
- Only works if we set L and t s.t. there is no outlier in S with constant probability
- Space: $O(n L)=O\left((n \log k)^{1+1 /(c-1)}+n d\right)$
- Time: $O\left(L k^{2}\right)=O\left(\left(k^{2}+\frac{\log n}{r}\right) d(\log k)^{c /(c-1)} n^{1 /(c-1)}\right)$
- Only makes sense for $c>2$
- Not optimal:
- ANN query time is $O\left(d n^{\frac{1}{c}}\right)$
- So if we want to improve over these we should be able to deal with outliers.

Robust Core-sets

- S^{\prime} is an l-robust β-coreset for S if
- for any set O of outliers of size at most l
- $\left(S^{\prime} \backslash 0\right)$ is a β-coreset for S
- Peeling Algorithm [Agarwal, Har-peled, Yu,'06][Varadarajan, Xiao, '12]:
- Repeat $(l+1)$ times
- Compute a β-coreset for S
- Add them to the coreset S^{\prime}
- Remove them from the set S

Note: if we order the points in S^{\prime} as we find them, then the first $\left(l^{\prime}+1\right) k$ points also form an l^{\prime}-robust β-coreset.

2 robust coreset: $S^{\prime}=\{3,5 ; 2,9 ; 1,6\}$

Algorithm B

- Parameters L and t can be set s.t. With constant probability
- Any neighbor of q falls into the same bucket as q in at least one hash function
- Total number of outliers is at most $3 L$
- For each bucket $A_{i}[j]$ keep an $3 L$-robust $1 / 3$-coreset in $A^{\prime}{ }_{i}[j]$ which has size $(3 L+1) k$
- For query q
- For each bucket $A^{\prime}\left[g_{i}(q)\right]$
- Find smallest l s.t. the first $(k l)$ points contains less than l outliers
- Add those $k l$ points to S
- Remove outliers from S
- Return $\operatorname{GMM}(S)$

Example and Analysis

- Total \# outliers $\leq 3 L,|S|<O(L k)$
- Time: $\mathrm{O}\left(L k^{2}\right)=\mathrm{O}\left(\left(k^{2}+\frac{\log n}{r}\right) d * \log k * n^{\frac{1}{c}}\right)$
- Space: $O(n L)=O\left(\log k * n^{1+1 / c}+n d\right)$
- Achieves (c,6)-Approx for the same reason

Conclusion

	Algorithm A	Algorithm B	ANN
Distance Apx. Factor	$\mathrm{c}>2$	$\mathrm{c}>1$	$\mathrm{c}>1$
Diversity Apx. Factor α	6	6	-
Space	$\sim n^{1+\frac{1}{c-1}}$	$\sim n^{1+\frac{1}{c}}$	$n^{1+\frac{1}{c}}$
Query Time	$\sim d n^{\frac{1}{c-1}}$	$\sim d n^{\frac{1}{c}}$	$d n^{\frac{1}{c}}$

Further Work

- Improve diversity factor α
- Consider other definitions of diversity , e.g., sum of distances

Thank You!

