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Near Neighbor Problem 
• Definition 

– Set of  𝑛  points 𝑷 in 𝑑-dimensional 
space 

– Query point 𝒒 
– Report one neighbor of 𝒒 if there is any 
 

• Neighbor:  A point within distance 𝑟 of 
query 
 

• Application  
– Major importance in databases 

(document, image, video), 
information retrieval, pattern 
recognition 
• Object of interest as point 
• Similarity is measured as distance. 



Motivation 
Search: How many answers? 
• Small output size, e.g. 10 

– Reporting 𝑘 Nearest Neighbors may not 
be informative (could be identical texts) 

• Large output size 
– Time to retrieve them is high 

 
Small output size which is  
•  Relevant  and Diverse  
• Good to have result from each 

cluster, i.e. should be diverse  



Diverse Near Neighbor Problem 
• Definition 

– Set of  𝑛  points 𝑷 in 𝑑-dimensional space 
– Query point 𝒒 
– Report the k most diverse neighbors of 𝑞 
 

• Neighbor:  
– Points within distance 𝑟 of query 
– We use Hamming distance 

• Diversity:  
– div S = m𝑖𝑛

𝑝,𝑞∈𝑆
|𝑝 − 𝑞| 

 
• Goal: report Q (green points), s.t.  

– 𝑄 ⊆ 𝑃 ∩ 𝐵 𝑞, 𝑟  
– |Q| = k 
– 𝑑𝑖𝑑 𝑄  is maximized 

 



Approximation 
• Want sublinear query time, so need to approximate 
• Approximate NN: 

– 𝐵 𝑞, 𝑟 →   𝐵 𝑞, 𝑐𝑟  for some value of 𝑐 > 1 

– Result: query time of 𝑂(𝑑𝑛
1
𝑐) 

• Approximate Diverse NN: 
– Bi-criterion approximation: distance and diversity 
–  (𝐜,𝜶)-Approximate 𝑘-diverse Near Neighbor  
– Let 𝑄∗ (green points) be the optimum solution for 𝐵 𝑞, 𝑟  

• Report approximate neighbors 𝑄 (purple points) 
𝑄 ⊆ 𝐵 𝑞, 𝑐𝑟  

• Diversity approximates the optimum diversity 

  𝑑𝑖𝑑 𝑄 ≥ 1
𝛼
𝑑𝑖𝑑 (𝑄∗) , 𝛼 ≥ 1 



Results 
Algorithm A Algorithm B 

Distance Apx. Factor c > 2 c >1 
 

Diversity Apx. Factor α  6 6 

Space (𝑛 log𝑘)1+1/(𝑐−1)+𝑛𝑑 log𝑘 ∗ 𝑛1+1/𝑐 + 𝑛𝑑 

Query Time 𝑘2 +
log𝑛
𝑟 𝑑 (log𝑘)𝑐/(𝑐−1)𝑛1/(𝑐−1) 

 

𝑘2 +
log𝑛
𝑟 𝑑 ∗ log𝑘 ∗ 𝑛1/𝑐 

 

• Algorithm A was earlier introduced in [Abbar, Amer-yahia, Indyk, Mahabadi, 
WWW’13] 



Techniques 



Compute k-diversity: GMM 
• Have n points, compute the subset with 

maximum diversity. 
• Exact : NP-hard to approximate better 

than 2 [Ravi et al.]  
• GMM Algorithm  [Ravi et al.] [Gonzales] 

– Choose an arbitrary point 
– Repeat  k-1  times 

• Add the point whose minimum distance to the 
currently chosen points is maximized 

 
• Achieves approximation factor 2 
• Running time of the algorithm is O(kn) 

 
 



Locality Sensitive Hashing (LSH) 
• LSH 

– close points have higher probability of 
collision than far points 

– Hash functions: 𝑔1 , … ,𝑔𝐿  
•  𝑔𝑖 = < ℎ𝑖,1, … , ℎ𝑖,𝑡 >  
• ℎ𝑖,𝑗 ∈  ℋ is chosen randomly  
• ℋ is a family of hash functions which is 

𝑃1,𝑃2, 𝑟, 𝑐𝑟 -sensitive: 
– If 𝑝 − 𝑝𝑝 ≤ 𝑟 then Pr ℎ 𝑝 = ℎ 𝑝𝑝 ≥ 𝑃1 
– If 𝑝 − 𝑝𝑝 ≥ 𝑐𝑟 then Pr ℎ 𝑝 = ℎ 𝑝𝑝 ≤ 𝑃2 

• Example: Hamming distance: 
– ℎ 𝑝 = 𝑝𝑖  , i.e., the ith bit of 𝑝 
– Is (1 − 𝑟

𝑑
, 1 − 𝑟𝑐

𝑑
, 𝑟, 𝑟𝑐)-sensitive 

–  𝑳 and 𝒕 are parameters of LSH 



LSH-based Naïve Algorithm 
• [Indyk, Motwani] Parameters 𝐿 and 𝑡 can be set s.t.  

With constant probability 
– Any neighbor of 𝑞 falls into the same bucket as 𝑞 in at least 

one hash function 
– Total number of outliers is at most 3𝐿 
– Outlier : point farther than 𝑐𝑟 from the query point 
 

Algorithm 
• Arrays for each hash function 𝐴1, … ,𝐴𝐿 
• For a query 𝒒 compute 

– Retrieve the possible neighbors S = ⋃ 𝑨[𝑔𝑖(𝑞)]𝐿
𝑖=1  

– Remove the outliers S = S ∩ B q, cr  
– Report the approximate k most diverse points of S, or 

GMM(S) 
 

• Achieves (c,2)-approximation 
 

• Running time may be linear in 𝑛    
– Should prune the buckets before collecting them 

 

 
 



Core-sets 
• Core-sets [Agarwal, Har-Peled, Varadarajan]: subset of a point set S that 

represents it. 
• Approximately determines the solution to an optimization 

problem 
• Composes: A union of coresets is a coreset of the union 

• β– core-set: Approximates the cost up-to a factor of β 
 

• Our Optimization problem:  
– Finding the k-diversity of S. 
– Instead we consider finding K-Center Cost of S 

• 𝐾𝐾 𝑆, 𝑆′ = max
𝑝∈𝑆

min
𝑝′∈𝑆′

𝑝 − 𝑝′   

• 𝐾𝐾𝑘 𝑆 = min
𝑆′⊆𝑆 , 𝑆′ =𝑘

𝐾𝐾(𝑆, 𝑆′)  

– KC cost 2-approximates diversity  
• 𝐾𝐾𝑘−1 𝑆 ≤ 𝑑𝑖𝑑𝑘 𝑆 ≤ 2.𝐾𝐾𝑘−1 𝑆  

 
• GMM computes a 1/3-Coreset for KC-cost 

 



Algorithms 



Algorithm A 
• Parameters 𝐿 and 𝑡 can be set s.t.  with constant probability 

– Any neighbor of 𝑞 falls into the same bucket as 𝑞 in at least one hash 
function 

– There is no outlier 
 

• No need to keep all the points in each bucket, 
•  just keep a coreset! 

– 𝑨𝑝𝒊 𝒋 = 𝑮𝑮𝑮 𝑨𝒊 𝒋  
– Keep a 1/3 coreset of 𝑨𝒊 𝒋  

 
• Given query 𝒒 

– Retrieve the coresets from buckets S = ⋃ 𝑨𝑝[𝑔𝑖(𝑞)]𝐿
𝑖=1  

– Run  GMM(S) 
– Report the result 

 
 

 
 

 

 



Analysis 
 

• Achieves (c,6)-Approx 
– Union of 1/3 coresets is a 1/3 coreset for the union 
– The last GMM call, adds a 2 approximation factor 

 
• Only works if we set 𝐿 and 𝑡  s.t. there is no outlier in 𝑆 

with constant probability 
– Space: 𝑂 𝑛𝐿 =  𝑂((𝑛 log 𝑘)1+1/(𝑐−1) + 𝑛𝑑)  
– Time: 𝑂 𝐿𝑘2 =  𝑂( 𝑘2 + log 𝑛

𝑟
𝑑 (log 𝑘)𝑐/(𝑐−1)𝑛1/(𝑐−1)) 

– Only makes sense for 𝑐 > 2 
 

• Not optimal: 
– ANN query time is 𝑂(𝑑𝑛

1
𝑐) 

– So if we want to improve over these we should be able to deal 
with outliers. 

 
 
 

 



Robust Core-sets 
• 𝑆′is an 𝑙-robust β-coreset for S if 

– for any set 𝑂 of outliers of size at most 𝑙 
– (𝑆𝑝\O) is a β-coreset for 𝑆 

• Peeling Algorithm [Agarwal, Har-peled, 
Yu,’06][Varadarajan, Xiao, ‘12]:   

– Repeat (𝑙 + 1) times 
• Compute a β-coreset for 𝑆 
• Add them to the coreset 𝑆𝑝 
• Remove them from the set 𝑆 

Note: if we order the points in 𝑆𝑝 as we find 
them, then the first 𝑙′ + 1 𝑘 points also form 
an 𝑙𝑝-robust β-coreset. 
 
 

2 robust coreset: S’= {3, 5;  2, 9;  1, 6} 

1 robust coreset 
 



Algorithm B 
• Parameters 𝐿 and 𝑡 can be set s.t.  With constant 

probability 
– Any neighbor of 𝑞 falls into the same bucket as 𝑞 in at least one 

hash function 
– Total number of outliers is at most 3𝐿 
 

• For each bucket 𝐴𝑖 𝑗  keep an  3𝐿-robust 1/3-coreset   in 
𝐴𝑝𝑖 𝑗  which has size 3𝐿 + 1 𝑘 

 
• For query 𝑞 

– For each bucket 𝐴𝑝[𝑔𝑖(𝑞)] 
• Find smallest 𝑙 s.t. the first (𝑘𝑙) points contains less  than 𝑙 outliers 
• Add those 𝑘𝑙 points to 𝑆 

– Remove outliers from 𝑆 
– Return 𝐺𝐺𝐺(𝑆) 

 



Example and Analysis 
 

 
 
 

 
• Total # outliers ≤ 3𝐿 , 𝑆 < 𝑂(𝐿𝑘) 

• Time: O(𝐿𝑘2) = O( 𝑘2 + log 𝑛
𝑟

𝑑 ∗ log 𝑘 ∗ 𝑛
1
𝑐) 

• Space: 𝑂 𝑛𝐿 =  𝑂(log𝑘 ∗ 𝑛1+1/𝑐 + 𝑛𝑑) 
• Achieves (c,6)-Approx for the same reason 

 



Conclusion 

Further Work 
• Improve diversity factor α 
• Consider other definitions of diversity , e.g., sum of distances 
 

 
Algorithm A Algorithm B ANN 

Distance Apx. 
Factor 

c > 2 c >1 
 

c >1 

Diversity Apx. 
Factor α  

6 6 - 

Space 
~𝑛1+

1
𝑐−1 ~𝑛1+

1
𝑐  𝑛1+

1
𝑐  

Query Time 
~𝑑 𝑛

1
𝑐−1 ~𝑑 𝑛

1
𝑐  𝑑 𝑛

1
𝑐  



Thank You! 
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